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Abstract: We experimentally demonstrate 100Gb/s/ IM/DD transmission over 25km SSMF using 

20G-class DML and PIN enabled by convolutional neural network based equalization technique. 

Transmission performance in C-band and O-band using PAM-8 and PAM-16 are compared. 
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communications 

1. Introduction 

In these years, fast development of Internet services such as cloud computing and video streaming is driving up the 

demand for high speed optical inter-datacenter interconnection, which requires high-speed low-cost intensity 

modulation and direct detection (IM/DD) transmission system. To meet this requirement, advanced modulation 

formats like pulse amplitude modulation (PAM), carrier-less amplitude and phase modulation (CAP) and discrete 

multi-tone (DMT) are proposed to efficiently use limited bandwidth. Due to its simple nature, PAM has gained 

popularity among the IM/DD transmission community. For high-speed transmission with low-bandwidth optical 

devices, PAM-8 and PAM-16 seems to be a reasonable choice, which have been realized in various previous work [1-

6]. To truly meet the requirement of low cost, instead of using high-bandwidth external modulation like external 

modulated laser (EML) or Mach Zehnder modulator (MZM), low-cost low-bandwidth directly modulated laser (DML) 

is highly desired. However, due to the severe inter-symbol interference (ISI) caused by the limited bandwidth, strong 

chirp and nonlinearity of the optical devices, traditional equalization techniques are not satisfactory in this condition, 

such as feed-forward equalization (FFE) and volterra nonlinear equalization (VNE). Machine learning has been 

popular these years and shown its powerful capability in the domain of computer vision and machine translation. Some 

related previous work has tried feed-forward fully-connected neural network (FCN) [5,6] for inter-datacenter 

interconnection, which is a machine learning algorithm but providing limited performance. As a powerful tool of 

machine learning in computer vision and pattern recognition, convolutional neural network (CNN) helps AlphaGo 

defeat various professional Go players [7] and also shows good performance on optical performance monitoring [8]. 

In this paper, we experimentally demonstrate 100Gbps PAM-8/PAM-16 IM/DD transmission over 25km standard 

single-mode fiber (SSMF) using 20G-class DML and P-I-N photodiode (PIN) in C-band & O-band with CNN based 

post-equalization. The total 3-dB end-to-end bandwidth are 13.3 GHz for C-band devices and 16.8 GHz for O-band. 

The proposed CNN based post-equalizer has an architecture similar to the most classic hand-written digit recognition 

CNN, LeNet5 [9] and shows its equalization capability upon 100Gbps PAM-8/PAM-16 signal. 

2.  Principle of CNN based post-equalizer 

 
Fig. 1 Structure of (a) 1D convolutional layer, (b) linear layer and (c) proposed CNN-based equalizer.  

(d) Graph of rectified linear unit (ReLU) 

CNN has proven its success in pattern recognition due to its local feature extraction capability, which motivates us 

from the similarity between images and received sequences. After all, in both domains we want to recover some 

pattern from the noisy, distorted signal. The most important building block of CNN is the convolutional layer, which 
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can be designed to be one-dimensional (1D), 2D and 3D but the underlying principle are same. In a convolutional 

layer, there are many output channels, each of which has a sliding window doing cross-correlation with the input array. 

Figure 1(a) shows the structure of a channel of a 1D convolutional layer. Another important building block is the 

linear layer, in which input is multiplied by a weight matrix to form the output, as shown in Fig. 1 (b). In the proposed 

CNN-based equalizer, we setup two consecutive 1D convolutional layers with a sliding window of five and output 

channel of 6 and 16. The input of the first convolutional layer is 101. After the convolutional layers, the signal is 

unrolled to be a column vector and fed into four consecutive linear layers with number of output be 600, 128, 84 and 

8 or 16. The 8 or 16 output units denotes the levels of PAM-8 and PAM-16, with the highest to be decision symbol. 

In the middle of convolutional and linear layers, the activation layer of rectified linear unit is applied to provide 

nonlinearity while avoiding the training problem of gradient vanishing, which is shown in Fig. 1(d). The whole 

network structure can be found in Fig. 1(c). 
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The loss function of the network is the cross-entropy loss, which is shown in Eq. (1). The cross-entropy loss is 

computed combining a special activation function called Softmax, which converts the output unit to its probability 

approximation. In fact, the concept of cross entropy comes from information theory. With the minimization of cross 

entropy, the probability distribution of output units come close to the target distribution, thus the network output 

gradually approaching the desired output and the error rate becomes lower and lower while training. The network is 

trained with back-propagation algorithm and mini-batch gradient descent. Using back-propagation algorithm, the 

gradient of the whole network is gained supporting the gradient descent optimization rule. To improve training 

efficiency, mini-batch gradient descent is applied with batch size of 512, meaning simultaneously 512 samples are 

sent for training, taking advantage of the parallel computing capability of an Nvidia video card. To avoid over-fitting, 

dropout mechanism is applied to the network while training, which randomly drops the hidden units out from training 

by setting them to zero. The probability of dropout is set to 0.1 after tuning. The whole dataset contains ten independent 
152 1  pseudorandom-binary-sequences (PRBS15) with six of them forming the train dataset of around 200k symbols, 

and two for cross validation and test dataset contain each. The train dataset is used to train the model, while the model 

is tuned upon the train and cross validation dataset. The final BER result is calculated based upon the test dataset in 

order to keep the generalization of the model. Once the training is completed, the optimized parameters of CNN can 

be stored and only forward calculation is required for real-time error counting.  

3.  Experimental setup & results 

 

Fig. 2 (a) Experimental setup (b) Eye diagram (c) Frequency Response of C-band & O-band links 

Figure 2(a) shows the experimental setup of the 100 Gbps IM/DD transmission system. A Keysight 8196A arbitrary 

waveform generator (AWG) is used to generate 33 GBd PAM-8 and 25 GBd PAM-16 signal at transmitter side. The 

signal is then modulated to optical domain with C-band / O-band DML. After 25km SSMF transmission, the optical 

signal is attenuated by a variable optical attenuator (VOA) to control the optical power into a 20G-class PIN. After 

PIN, the signal is digitized and sampled by a LeCroy digital sampling oscilloscope (DSO) with 30-GHz bandwidth 

and 80-GSa/s sample rate. The end-to-end 3-dB channel bandwidth is 13.3 GHz for the C-band link and 16.8 GHz for 

O-band link, as shown in Fig. 2(c). The sampled signal is then offline-processed using MATLAB and Python. The 

offline digital signal processing (DSP) flow chart can also be found in Fig. 2(a). First the digitized signal is resampled 

to one sample per symbol, which enables real-time implementation with 33 GS/s analog-digital converter (ADC). 

Then the transmitted PRBS-15 sequence is extracted and fed into T-spaced CNN-based equalizer. After the training 

and test process described in previous section, errors are counted and bit error rate is calculated upon the output of the 

equalizer. 

The eye diagrams of 33 GBd PAM-8 can be found in the upper half of Fig. 2(b), and 25 GBd PAM-16 in the lower 

half. The electronic back-to-back (BtB) signals are quite good, but after electrical-optical (E-O) and optical-electrical 
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(O-E) conversion, the eyes are completely closed due to the severe ISI caused by the limited channel bandwidth and 

the nonlinearity sensitivity of PAM-8 and PAM-16 signals. After the CNN-based equalization performing both 

equalization and demapping, the eyes are open again.  

We compare the BER performance of different modulation formats and wavebands for 25km SSMF and optical 

BtB transmission, as shown in Fig. (3). With the help of proposed CNN-based equalization, all the transmission 

configuration achieves BER under 7% hard-decision forward-error-correction (HD-FEC) limit of 3.8e-3. The BER 

performance is similar for both 25km and optical BtB transmission, with receiver sensitivity ranging from -6.5 dBm 

to -5.5 dBm. As clearly shown in Fig. 3, the result of O-band transmission outperforms C-band due to the higher 

channel bandwidth of O-band link. The dispersion in C-band nearly does not bring penalty due to the strong linear 

equalization capability of CNN, which implies longer transmission distance can be supported. What’s more, even with 

higher baud rate, the BER result of 33 GBd PAM-8 is better than 25 GBd PAM-16, which might come from the higher 

optical devices nonlinearity and noise sensitivity of the PAM-16 signal.  

 
Fig. 3 BER performance comparison of different modulation formats and wavebands for  

(a) optical back-to-back and (b) 25km-SSMF transmission. 

4.  Conclusions 

We experimentally demonstrate a 100Gbps IM/DD data link over 25km SSMF comparing PAM-8 / PAM-16 and C-

band / O-band with the help of proposed CNN-based equalization. To achieve the goal of low cost, DML and PIN are 

used in the experiment as the E-O and O-E conversion optics with 13.3 GHz end-to-end 3 dB channel bandwidth for 

C-band link and 16.8 GHz for O-band link. Receiver sensitivity ranging from -6.5 dBm to -5.5 dBm is achieved. By 

comparing different modulation formats and wavebands, we found 33 GBd PAM-8 outperforms the 25 GBd PAM-16 

due to its resistance to device nonlinearity and system noise and CNN shows strong equalization capability on 

dispersion and bandwidth, which could be worthy of further research. 
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